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Technical Objectives

The primary objective of this project is the development of materials that are both soft magnets and soft
dielectrics (with comparable values of permittivity and magnetic permeability) in the GHz-frequency
range. Such materials would enable novel approach to high performance RF antennas. This combination
of properties is difficult to attain in conventional magneto-dielectric materials; especially, obtaining soft
properties (low loss) in the GHz-frequency range is a challenge.

Technical Approach

Our approach relies on ferrimagnetic coordination polymers, consisting of Lewis basic organic di- and
polyradicals and Lewis acidic paramagnetic transition metal ions (Figure 1). Selection of metal ions (e.g.,
Mn(II) with half-filled d-levels) and intrinsic properties of organic radicals (light nuclei, short conjugation
lengths) is compatible with soft magnetic and dielectric properties. The key problem is that the magnetic
ordering temperatures for such coordination polymers (polymer networks) are limited by the strength of
the ferromagnetic exchange coupling within the organic diradical or polyradical. To address this
problem, we designed and developed synthetic methodology for Lewis basic, planarized organic
diradicals, in which the 2p-orbitals, carrying spin density, have near-perfect parallel alignment.

ferrimagnetic chain

Figure 1. Proposed approach to ferrimagnetic polymers based upon polymerization of Lewis basic
pianarized nitroxide diradicals with Lewis acidictransition metal ion complexes.



Results

Research publications resulting from the AFOSR support are listed in the references.”® Aminyl and
nitroxide diradicals, which were prepared and fully characterized, are summarized in Figure 2.
Unpublished work and the key aspects of synthesis and characterization of diradicals, as well as attempts
at polymerization of diradicals with transition metal complexes, are described below.

Aryl-Aryl Nitroxide Diradical and Aminyl Diradical
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Figure 2. Summary of prepared and characterized triplet (S = 1) ground state nitroxide
and aminyl diradicals.

The design and synthesis of diaryl nitroxide diradicals, in which both nitroxide moieties are flanked by
aryl rings, could enable synthesis of high-spin §> 1 polyradicals. (Such polyradicals could enable
preparation of coordination polymers with transition metal ions of higher dimensionality.}) We prepared
the first such diaryl nitroxide diradical 1 (Figure 3); 1 is stable at ambient conditions and it

possesses § = 1 ground state with large singlet-triplet energy gap both in the solid state (2J/k >> 300 K)
and in solution (2J/k > 200 K). EPR studies of 1 showed well-resolved "“N-hyperfine coupling with the
|4,,/2hc] splitting, indicating that the nitroxides are coplanar with m-phenylene.?
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Flgure 3. Synthesis of diradical 1, diamine 7, and tetraamine 8. Ar = 4-tert-butylphenyl.



This synthetic methodology developed for diamine 7 was extended to tetraamine 8, via tetra-connection
and tetra-annelation steps (Figure 3). With the blocking group, such as methyl, at the ortho position,
tetraamine 8, with nine co-linearly annelated rings, is obtained in high yield. Oxidation of 8 with
MCPBA gave § = 12 — I; screening for optimum routes to the tetraradical is in progress.

Polymerization of diradical 1 with Mn(hfac), yielded only dimeric products, which were characterized
magnetically and assigned structure 9 (Figure 4).
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Figure 4. Attempted polymerization of diradical 1.

In the process of optimization of synthesis of nitroxide diradical 1 via oxidation of diamine 7, we

discovered a novel n-conjugated chiral system, conjoined double helicene 10, in which two molecular
1,34

helices are fused in their midsections (Figure 5).
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Figure 5. Structure drawing of conjoined double helicene 10 and the actual structure as obtained by the X-ray

crystallography. Each of the two molecular helices is shown in stick-and-ball.

Efficient methodology for generation of aminyl diradicals, as illustrated for diradical 2, was developed
(Figure 6).” Starting from diamine 7 and tetraamine 8, this methodology gave aminy! radicals with S =1
and § = 1, respectively. However, starting from diamine 12, in which the center ortho-position was
sterically shielded with 4-tert-butylpheny! by the sequence of bromination and Suzuki coupling, S = 1
aminyl diradical 2 was cleanly obtained (Figure 6). The magnetic studies and EPR spectroscopy show S
= 1 ground state with 2J/k > 200 K and co-planar diarylaminyls.’
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Figure 6. Synthesis of S = 1 aminyl diradical. tBu +Bu
As planarized planarized aryl-aryl nitroxide diradical 1 could not be polymerized with Lewis acidic Mn"-
based complexes (Figure 4), we developed synthetic approaches to stable alkyl-aryl nitroxides, which
should be a stronger Lewis bases than 1. This approach is based upon the first general and efficient
method for preparation of benzobisoxazines (Figure 7). Benzobisoxazines are not only the selected
precursors for the corresponding nitroxide diradicals (Figure 2), but they may provide monomers for
another type of polybenzoxazines. (Typical polybenzoxazines, derived from 3,4-dihydro-2H-1,3-
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benzoxazines, are thermosetting resins for polymer composites with superior mechanical, flame-retardant,
and superhydrophobic properties, including aerospace applications.)
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Figure 7. Synthesis of benzobisoxazines by silica gel catalysis.

Oxidation of benzobisoxazines produced corresponding nitroxide diradicals 3, 4, and 5 (Figure 2) in good
yields and with high purities.* Diradical 3 is planar (X-ray crystallography). Diradicals 3, 4, and 5
possess S = 1 ground state with large singlet triplet gap both in the solid state (2//k >> 300 K) and in
solution (2J/k > 200 K). Diradical 5 was recently employed as one of the model compounds to probe
electron spin relaxation properties of organic diradicals and polyradicals.’

Polymerizations of diradical 3 with transition metal ions, Mn", Co", and Ni", resulted in isolation of low
molecular weight materials only. For example, polymerization of dinitroxide 4 with Mn"(hfac), and
Co''(hfac), led to isolation of compounds 13 and 14 (Figure 8). Structures of compounds 13 and 14 were
unequivocally determined by X-ray crystallography.6
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Figure 8. Structures of compounds 13 and 14 as characterized by X-ray crystallography.
Molecule of water complexed to cobalt in 14 in omitted for clarity.

Structures of 13 and 14 may be considered as dimers of nitroxide diradical 3, in which two molecules of 3
are connected via C-C and C-O bonds (red lines in Figure 8). The formation of C-C bond, between the
two ortho-positions with respect to radicals, was especially surprising. Therefore, we developed
synthesis of nitroxide diradical 6, in which the ortho-position is blocked by the bulky 4-fert-butylphenyl
group, to prevent the dimerization (Figure 2).°

Although, X-ray structure of 6 indicated that the nitroxides were slightly bent out-of-the-plane of the m-
phenylene, magnetic studies showed that 6 possesses S = 1 ground state with a substantial 2J/k > 500 K.
(2J/k is this range is difficult to measure accurately.) These experimental results are consistent with the
U?3LYP/6—3 1G* calculations: 2J/k = 1600 K (3.3 kcal/mol) for 3 and 2J/k = +1100 K (2.2 kcal/mol) for
6.

Detailed magnetic and structural studies revealed that crystalline diradicals 3 and 6 form unprecedented
examples of organic one-dimensional, highly isotropic antiferromagnetic chains, with intra-chain
antiferromagnetic coupling between S = 1 diradicals, 2Jcyan/k = =7 K and —4 K, mediated through C-H---
O non-classical hydrogen bonds.® Such one-dimensional, isotropic, antiferromagnetically coupled with
integer local spins (e.g. § = 1) are of fundamental interest in the recent area of spin quantum liquids.



Conclusion

Synthetic methodologies for novel planarized S = 1 nitroxide diradicals and aminyl diradicals are
developed. Such diradicals are found to possess triplet (S = 1) ground states with large singlet-triplet
energy gaps. For nitroxide diradicals, which are stable at ambient conditions, population of the singlet
excited states is not detectable at room temperature, i.e., the measured singlet-triplet gaps far exceed
thermal energy at room temperature. Our attempts to use such planarized nitroxide diradicals as
monomers for coordination polymers with transition metal complexes led only to isolation of low
molecular weight materials.
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